“Raggi UV, una ricerca promettente ma bisogna stare attenti”. pubblichiamo una lettera di alcuni esperti. Abbiamo accolto con favore l’articolo del collega Marco Tedesco, “Ecco la luce (ultravioletta) che può far male al virus del” 30 aprile, perché contiene numerosi spunti sulle possibili modalità di contrastare la diffusione del SARS-CoV-2. Bene fa l’autore a sottolineare di fare attenzione alle bufale. Vogliamo, tuttavia, fornire qualche ulteriore precisazione che completi le informazioni raccontate nell’articolo per garantire una quadro completo ai lettori.
Nell’articolo Marco Tedesco descrive la ricerca del gruppo del professor Brenner della Columbia University Medical Center di New York. I risultati mostrano che basse dosi (2 mJ/cm2) di radiazione UV-C alla lunghezza d’onda di 222 nanometri inattivano particelle di virus dell’influenza A (H1N1) presenti nell’aria. I risultati ottenuti in esperimenti in vitro su cellule epiteliali umane e su animali da laboratorio, suggeriscono la possibilità di utilizzare questa radiazione in luoghi pubblici, anche in presenza di pubblico. Questo stretto intervallo di lunghezze d’onda non comprometterebbe la salute dell’uomo.
Le radiazioni ultraviolette (UV) sono radiazioni elettromagnetiche con lunghezza d’onda compresa tra 100 e 400 nm (nm = nanometro), inferiori di quelle della luce visibile e superiori ai raggi X. L’energia della radiazione UV è più alta di quella visibile, ma più bassa dei raggi X. La principale fonte di radiazione UV è la luce solare, che la rende il principale agente cancerogeno ambientale a cui gli esseri umani sono abitualmente esposti.
La radiazione UV è classificata come UV-A (320-400 nm), UV-B (280-320 nm) e UV-C (100-280 nm), in base agli effetti biologici delle diverse lunghezze d’onda. Gli UV-C hanno un’energia più elevata degli UV-A e UV-B e sono pertanto potenzialmente più pericolosi. Fortunatamente l’ossigeno e l’ozono dell’atmosfera ci proteggono completamente dalla radiazione UV-C e quasi totalmente da quella UV-B, lasciando passare soltanto una parte di quella UV-A. Anche quest’ultima causa al pari della radiazione UV-B, rischi per l’uomo associati a malattie cutanee derivanti da una sovraesposizione al sole senza adeguata protezione, quali eritema di vario grado fino all’ustione solare, fotodermatiti, tumori cutanei e fotoinvecchiamento cutaneo.
È d’altro canto noto che le radiazioni UV-C artificiali hanno un effetto germicida; purtroppo la gran parte delle lunghezze d’onda ha anche effetti dannosi su organi come la cute e l’occhio umano. La sovraesposizione a queste radiazioni può infatti produrre effetti che vanno da una moderata irritazione della pelle o degli occhi a eritemi e a dolorose fotocheratiti. Questi effetti sono fortunatamente transitori, poiché soltanto le cellule più superficiali della pelle e della cornea ne sono significativamente colpite, ma il naturale turnover di tali epiteli ne garantisce la rapida rigenerazione.
L’elevatissimo assorbimento della radiazione UV-C da parte delle molecole biologiche come proteine e collagene è il punto cruciale della proposta della Columbia University. Poiché lo strato più esterno (lo strato corneo costituito da cellule considerate “morte” in quanto prive di nucleo e quindi di DNA) della pelle assorbe la radiazione UV-C; solo una parte residuale di essa penetra quindi fino allo strato germinativo (basale) dell’epidermide. Il rapporto n.187 della Commissione internazionale per l’illuminazione ha infatti evidenziato che il rischio di cancro da esposizione alle lampade germicide è estremamente ridotto. Il lavoro di Brenner e di altri scienziati dimostra che la luce ultravioletta compresa fra 207-222 nm, a dosi opportune, inattiva efficacemente virus e batteri senza danneggiare la pelle esposta del mammifero. Queste radiazioni vengono assorbite (cioè bloccate) dagli strati più esterni della pelle e degli occhi, mentre possono penetrare nei batteri e nei virus, che hanno dimensioni micrometriche, e inattivarli. Basta spostarsi di soli 32 nanometri più in alto perché la luce UVC utilizzata diventi pericolosa. A 254 nm la situazione cambia drasticamente e, come riportato dagli stessi autori, si possono sviluppare tumori alla pelle e cataratta a causa del danno provocato dalla luce alle molecole del DNA.
Certamente promettente, questa intuizione richiede ulteriori approfondimenti per stabilire se i risultati ottenuti sul virus dell’influenza H1N1 – un virus a RNA, ma non appartenente alla famiglia dei coronavirus – nelle condizioni sperimentate da Brenner e collaboratori siano ripetibili sul famigerato SARS-CoV-2.
Va infine ricordato che questi dati molto incoraggianti andranno comunque verificati in condizioni reali come gli ambienti chiusi in cui la concentrazione del virus nelle goccioline emesse da tosse e starnuti di soggetti affetti potrebbe rendere necessario un aumento delle dosi e dei tempi di irradiazione previsti dal protocollo di Brenner, aumentando conseguentemente la quantità di UVC a cui potrebbero essere esposti soggetti che transitano in tali ambienti.
Infine, va sottolineato che l’innocuità della radiazione fra 207 e 220 nm è vera in condizioni di cute normale sana, ma è da verificare se possa esserlo in condizioni, fisiologiche o patologiche, che determinano assottigliamento cutaneo, quali nella cute del bambino o dell’anziano, nel caso di atrofie cutanee patologiche o indotte da farmaci.
*Valentina Rapozzi, presidente della Società Italiana di Fotobiologia
Alberto Credi, presidente del Gruppo Italiano di Fotochimica
Marina Venturini, coordinatore del Gruppo di studio di Fotodermatologia della Società Italiana di dermatologiamedica, chirurgica, estetica e malattie sessualmente trasmesse (SIDeMaST)
Massimo Trotta, Presidente della Education and Training Committee della Società Europea di Fotobiologia
Maurizio D’Auria, Presidente della Società Europea di Fotochimica
Lascia un commento